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Abstract

We review recent advances in the understanding of the mutation-selection balance of asexual replicators. For over 30 years,
population geneticists thought that an expression derived by Kimura and Maruyama in 1966 fully solved this problem. However,
Kimura and Maruyama’s result is only correct in the absence of neutral mutations. The inclusion of neutral mutations leads to
a wealth of interesting new effects, and, in particular, to a selective pressure to evolve robustness against mutations. We cover
recent literature on the population dynamics of asexual replicators on networks of neutral genotypes, on the outcompetition
of fast replicators by slower ones with better mutational support, and on the probability of fixation at high mutation rates. We
discuss empirical evidence for the evolution of mutational robustness, and speculate on its relevance for higher organisms.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1966, Kimura and Maruyama[1] published an
important result about the average fitness of an asexu-
ally reproducing population. They calculated that the
average fitness depends only on the mutation rateµ,
and is given by e−µ (times the fitness of the fastest
replicator in the population), irrespective of the de-
tails of the fitness landscape. This result, also referred
to as the Haldane–Muller principle (for Haldane[2]
and Muller [3] first found the approximate solution
1 − µ), has been the basis of countless arguments in
theoretical population genetics, most notably on the
evolutionary advantage of sexual replication[4–11].
However, the result is not as general as is widely
believed. Kimura and Maruyama derived it under an
important assumption—clearly stated in their paper.
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They assumed that the fastest replicating sequence in
the population did not have any neutral sites.

Recent results[12–14] show that Kimura and
Maruyama’s assumption is crucial. If neutral muta-
tions are taken into account, the average fitness of
the population depends on both the mutation rate and
the details of the fitness landscape. Moreover, in this
case, a selective pressure exists which pushes a pop-
ulation into those regions of genotype space where
the density of neutral sequences is highest, thereby
increasing the robustness against mutations in the in-
dividual sequences. Under certain conditions, the se-
lective pressure to increase mutational robustness can
be even larger than the selective pressure to increase
replication rate, so that a population can raise its av-
erage fitness by increasing mutational robustness and
simultaneously decreasing individual replication rates.
These results are best understood in the framework
of quasispecies theory[15–17], which postulates that
selection at high mutation rates does not act on the in-
dividual, but on quasispecies, that is, highly structured

0027-5107/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0027-5107(02)00307-X



4 C.O. Wilke, C. Adami / Mutation Research 522 (2003) 3–11

clouds of closely related mutants. The quasispecies
concept has been used extensively in the interpretation
of experiments performed with RNA-based viruses
[18–20], where mutation rates of the order of one per
genome and generation[21,22] can be observed.

It is important to note that quasispecies theory is
not an alternative, but rather an extension of standard
population genetics. Its basic equations are very simi-
lar in structure to mutation-selection equations that are
studied in the population genetics literature[23–25].
The difference between quasispecies theory and clas-
sic population genetics lies mainly in the explicit
consideration of high-dimensional sequence spaces,
and in the consideration of high mutation rates.

In the following, we review the arguments in favor
of the selective pressure for mutational robustness, as
well as the consequences of this selective pressure for
population fitness, individual replication rates, and the
fixation process in quasispecies theory.

2. Evolution of mutational robustness

The following simple thought experiment explains
how robustness against mutations has an immediate
influence on the reproductive success of a sequence.
Let us first consider a situation in which all mutations
are either fully neutral or lethal, and weaken this
assumption later. Consider two different sequences
(genotypes), A and B, that differ in the fraction of
mutations that are neutral (lethal). For sequence A, let
one out of ten mutations be neutral, while for sequence
B, assume that one out of five mutations is neutral.
If both sequences replicate with the same individual
speed, and produce mutated offspring with a proba-
bility of 0.5, then sequence B produces approximately
10% more viable offspring than sequence A. Now, if
all immediate and future descendants of sequence A
have the same 10% chance that a mutated offspring
sequence is viable (that is, if this neutrality fraction is
inherited), and likewise all immediate and future de-
scendants of sequence B retain their 20% probability
of producing mutated offspring that are viable, then
it is clear that a colony seeded by sequence B grows
approximately 1.1 times faster than a colony seeded
by sequence A. Below, we refer to the two colonies
seeded by sequences A and B as strains A and B,
respectively.

Two additional conclusions can be drawn from the
above example. First, the advantage of strain B over
strain A must be a function of the mutation rate. If,
for example, the mutation rate is around one, that is,
if almost every offspring carries some mutation, then
strain B grows twice as fast as strain A. In general,
the larger the mutation rate, the bigger the advantage
of strain B. Second, a potentialadvantage in repli-
cation speed can be offset by this robustness against
mutations. Assume, namely, that instead of replicating
with the same speed, sequences of strain A replicate
1.5 times faster than sequences of strain B. For small
mutation rates, strain A will obviously outgrow strain
B. However, if the mutation rate is sufficiently large
(for example, around one), the advantage in replica-
tion speed is offset by the larger number of offspring
surviving a mutation in strain B, and strain B will out-
grow strain A.

It is fairly straightforward to cast the above ideas
into a mathematical model, and to work out exactly
under what conditions strain A or B will win[26].
Assume that the individual replication speed of a
sequence in strain A is given byσA, and that the
probability with which an offspring sequence in strain
A is viable is QA (QA is the combined probability
that an offspring sequence is either unmutated, or, if
mutated, has suffered only neutral mutations). Then
the overall growth rate of strain A isσAQA, and that
of strain B isσBQB. Clearly, strain A will outcompete
strain B if σAQA > σBQB, and vice versa.

If the two strains compete in a flow reactor with
overall limited population size, then the concentration
xA of A as a function of time is given by:

xA(t) = xA(0)eσAQA t

xA(0)eσAQA t + xB(0)eσBQBt
, (1)

and that of B likewise byxB(t) = 1 − xA(t). Here,
xA(0) andxB(0) are the initial concentrations of A and
B, and we have assumed thatxA(0) + xB(0) = 1. In
order to compare the growth of A and B at different
mutation rates, we have to make an assumption about
how Q depends on the mutation rateµ. A reasonable
assumption isQ = e−αµ, whereα measures the prob-
ability with which a mutated sequence is viable[26].
Fig. 1 shows the relative concentrations of strains A
and B as a function of time and mutation rate. For the
given replication rates, strain B outcompetes strain A
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Fig. 1. Relative concentrations of strains A (dark surface) and B
(light surface) as a function of both timet and mutation rateµ. Both
strains are initially present in equal amounts,xA (0) = xB(0) = 0.5
(σA = 1.1, αA = 0.4, αB = 0.2).

at high mutation rates (µ > 0.48), and loses the com-
petition at lower mutation rates.

The frequency of neutral one-mutants relative to the
total number of all possible one-mutants of a sequence
is referred to as the sequence’sneutrality. In the exam-
ple above, all viable sequences within either strain A
or B were assumed to have the same neutrality. This is
a tacit assumption of population genetics, but it need
not be so. In general, a neutral mutation will often alter
the neutrality of a sequence. In proteins, for example,
there exist so called suppressor mutations[27] which,
once acquired, substantially increase the robustness of
the protein structure against disruption by further mu-
tations. The existence of suppressor mutations follows
from basic biochemistry. If two amino acids at key
positions in a protein interact particularly strongly,
then in other positions of the polypeptide chain there
can be substantial variation in the interaction strength
between amino acids without disruption of the protein
structure. On the other hand, if the residues at the key
positions interact weakly, the correct protein structure
can only be retained if residues at other positions
provide exactly the correct interactions. Therefore, in
general we must assume that each neutral substitution
modulates the number of neutral substitutions possi-
ble in the future. How does this variation in sequence
neutrality affect the growth of the two strains A and
B from the above example? To answer this question,
we have to discuss the growth of a single strain that
consists of several closely related mutants with differ-

ing neutralities. Imagine that a strain is seeded by a
single sequence with a particular neutralityν0. When
the sequence reproduces, a certain percentage of the
offspring sequences will be mutated. Each mutant
sequencei has a neutralityνi , which is potentially
different from the progenitor neutralityν0. When the
unmutated and the mutated offspring sequences have
further offspring, the number of viable offspring they
produce depends on their respective neutralities, and
the result is a complicated cascade of sequences repli-
cating and mutating. After some time, the cascade
reaches an equilibrium in the sense that the relative
frequencies of the different mutant sequences remain
approximately constant. The frequency of a particu-
lar sequence in this equilibrium state depends on the
sequence’s neutrality, and also on the neutralities and
frequencies of neighboring sequences that occasion-
ally produce this particular sequence via a mutation.

Mathematically, the cascade of replicating and
mutating sequences can be described as a branching
process[28]. If we are interested only in the equilib-
rium state after a long time and for a large population,
we can make use of a result which states that asymp-
totically, the relative frequencies of the sequences
are identical to those predicted from the quasispecies
equations[29]. van Nimwegen et al. were the first to
present a solution of the quasispecies equations for
the case in which all mutations are either neutral or
lethal [12]. Others have derived similar or extended
results[13,14]. Here, we will only briefly sketch the
main results of these studies.

In mathematical terms, the determining quantity is
the connection matrixGij of genotypes, which con-
tains an entry 1 if two neutral sequencesi and j are
exactly one mutation away, and an entry 0 otherwise.
The frequency of viable sequences in the population
is directly related to the population’s average growth
rate, and can be determined from the largest eigen-
value of Gij . The equilibrium population structure,
in turn, follows from the corresponding eigenvector.
This somewhat abstract mathematical result has the
following qualitative interpretation. In equilibrium, an
adapting population contains only a small fraction of
sequences with low neutrality, and consists mainly of
sequences with high neutrality. This is because adapta-
tion has moved the population into an area of sequence
space where the density of neutral sequences is maxi-
mal. The overall growth rate of the strain depends on
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this maximal density of neutral sequences. The denser
the neutral sequences, the faster the strain grows,
independently of the individual replication speed. A
particularly useful aspect of this theory is that such a
strain of closely related mutants—the quasispecies—
can be described by a single number: its overall
growth rate. Moreover, the growth rate consists of two
multiplicative contributions: the individual replication
speed (σ ), and the fraction of viable sequences in the
population (Q). Structurally, this situation is identical
to the simple case we discussed initially, where all
sequences within a given strain had the same proba-
bility of producing viable offspring. In other words,
the above results for the two strains A and B remain
unaltered in the case of variable sequence neutrality, if
only we interpretQA andQB as the average percent-
age of viable sequences produced by the respective
strains.

3. Survival of the flattest

The assumption of the previous section, that all
mutations are either neutral or lethal, is of course
unnatural. In general, the effects of mutations vary

Fig. 2. Schematic drawing of the sequence distribution on a high, narrow peak (A) and on a low, wide peak (B) for small and large
mutation rateµ.

continuously from strongly deleterious over slightly
deleterious to neutral and beneficial. In general, there-
fore, the overall growth rate of a strain cannot be
expressed as a product of individual replication speed
(σ ) and fraction of viable sequences (Q). However,
we can gain some qualitative understanding simply
by discussing the distribution of mutants in sequence
space as a function of the type of peak they inhabit. For
example, consider the type of fitness peaks depicted
in Fig. 2. In case A, we have a fitness peak that is rel-
atively high but narrow, whereas in case B the peak is
lower and wider (flatter). If the mutation rate is low,
the population is in both cases concentrated towards
the top of the peak, and strain A consequently grows
much faster than strain B (because its replication rate
is higher). However, at a higher mutation rate the pic-
ture changes. Now, in the case of A, most sequences
occupy the slopes adjacent to the fitness peak, driven
there by the strong mutational pressure. In the case of
B, on the other hand, the flatness of the peak allows
a larger percentage of the mutants to retain fitness
values close to the optimum. As a consequence, the
average growth rate of B exceeds that of A, and strain
B can outcompete strain A although B’s fitness peak is
lower.
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This effect was first described in theoretical work
by Schuster and Swetina[30], who studied the pop-
ulation dynamics on a fitness landscape with two
peaks of identical or almost identical height. In the
case of two peaks with identical height, they found
that a population will always move to the peak with
the stronger mutational support (that is, the wider and
flatter peak in our terminology). If the peak with the
stronger mutational support was slightly lower than
the other one, the fate of the population depended
on the mutation rate: the population would favor the
higher peak at low mutation rates, and the peak with
better mutational support at high mutation rates.

More recently, a similar effect was observed in ex-
periments with digital organisms. Digital organisms
are computer programs that are capable of error-prone
self-replication, which leads to mutation and, because
of limited availability of resources, to evolution[31].
Forty evolved strains of digital organisms were prop-
agated for 1000 generations in two environments that
differed only in their mutation rate: low and high
[32]. After 1000 generations had elapsed, strains that
evolved under a low mutation rate (the A strains)
tended to have a higher replication rate than the cor-
responding strains evolved under a high mutation
rate (the B strains). Twelve of these pairs of strains
with the highest differences in replication rate were
subsequently studied in direct competition at various
mutation rates. Without exception, the A strain out-
competed the B strain at low mutation rates, but lost
the competition at high mutation rates and was driven
to extinction.

The mutation rate at which a B strain turns com-
petitive can be predicted from measuring the decay in
mean fitness as a function of the mutation rate in the
two strains (Fig. 3). The A strain can hold its own as
long as itsmean fitness exceeds that of the B strain. (In
other words, because mean fitness is a group property,
knowledge of any individual fitness is insufficient to
predict the eventual outcome of the competition.) It is
worth mentioning that in this experiment, unlike the
case considered by Schuster and Swetina, the differ-
ence in replication rate between the A and B strains
was not small. In all 12 pairs of strains considered,
the A strain replicated at least 50% faster than the B
strain in the absence of mutations, and in 2 cases, the
A strain replicated more than 10 times faster than the
B strain in the absence of mutations.

Fig. 3. Average fitness vs. mutation rateµ in two different strains
of digital organisms. In this example, strain B starts to outcompete
strain A at a mutation rate of about 1.25. Data from[32].

4. Probability of fixation

Above, we have outlined a theory that describes the
circumstances under which a strain residing on a lower
but flatter fitness peak can outcompete one that resides
on a high but steep peak. However, the theory devel-
oped thus far can only describe the competition of two
strains that are present from the outset in macroscopic
quantities. It does not address the question of how a
strain can move to occupy a lower but flatter fitness
peak in the first place.

Imagine a strain in mutation-selection balance,
located on a high but narrow peak. Now, imagine that
by chance, a mutant ends up on a nearby peak which
is lower and flatter. If this mutant managed to repli-
cate a number of times, it would eventually grow into
a new strain capable of replacing the strain on the
high and narrow peak. But will the mutant be able to
replicate a sufficient number of times? After all, its
individual replication rate is lower than the one of the
fastest replicator currently in the population.

Wilke investigated the invasion of a slower replica-
tor with better mutational supportin silica for RNA
sequences replicating in a simulated flow reactor[26].
He found that such a mutant had indeed a positive
probability of fixation, provided the mutant would
eventually grow into a strain that could outcompete
the previously dominant strain. Recently, progress has
been made on the theoretical description of this inva-
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sion process. We can calculate the exact probability
of fixation with the aid of branching process theory
[33]. One of the main qualitative results that we ob-
tain from this theory is that the probability of fixation
of a single mutant is indeed positive if and only if
the strain the mutant will grow into has an advantage
over the currently established strain. The individual
replication rate of the invading mutant has no bearing
on whether fixation is possible or not, and moreover,
it has only minor influence on the actual fixation
probability as well. Instead, the fixation probability is
mainly determined by the mutational neighborhood
of the invading sequence[33].

5. Discussion

Quasispecies theory is most suitable for the de-
scription of RNA virus evolution. High sequence
heterogeneity[18,34,35] and high mutation rates
[21,22]are well documented for RNA viruses. There-
fore, the basic assumptions of quasispecies theory are
met. However, to date, virologists have not succeeded
in presenting clear experimental evidence for selec-
tion for mutational robustness or the outcompetition
of faster replicators. One study that is frequently
cited as evidence in favor of the outcompetition of
a faster replicator by a slower one investigated the
competition of different strains of vesicular stom-
atitis virus (VSV): de la Torre and Holland[36]
found that a particular strain of VSV could rise to
dominance if seeded at a fraction of 10−1 into its
progenitor population, but would remain suppressed
if seeded at a fraction of 10−3. However, the exper-
iment did not clarify whether this suppression was
caused by quasispecies effects, by drift (that is, the
strain simply did not rise to fixation at the low initial
concentration), or by frequency-dependent selection.
(Frequency-dependent selection has been observed
repeatedly in viral populations[37,38], and is not
included in the current quasispecies theory.) Because
of the weak evidence in this and similar experiments,
Holmes and co-workers concluded that there is cur-
rently no direct proof for the suppression of faster
replicators by slower ones, and for quasispecies ef-
fects in general, in RNA viruses[39,40].

However, indirect evidence in favor of quasis-
pecies effects—in particular for the selection for

mutational robustness—abounds, and is not restricted
to RNA-based viruses. We find tolerance against mu-
tations to an extent that largely exceeds the level ex-
pected from mere coincidence in the genetic code[41]
and in secondary structures of RNA virus genomes
[42]. Genetic regulatory systems in eukaryotes are
surprisingly robust as well[43].

Although the theory presented in this article ex-
plains why mutational robustness evolves, it does not
explain how genomes become robust against muta-
tions. Even for the digital organisms mentioned earlier,
we do not have a good understanding of what makes
a genome robust. The incorporation of non-coding
regions into a genome is certainly not necessary to in-
crease robustness. If the length of the genome is held
fixed, digital organisms subjected to high mutation
rates do nevertheless increase their robustness, typi-
cally at the expense of replication speed. It seems that
robustness is achieved through a re-coding of the ge-
netic information in a fault-tolerant manner, which can
involve the introduction of redundancy and the loss of
highly optimized functions. A similar increase in fault
tolerance does occur in the evolution of the suppres-
sor mutants in proteins discussed earlier[27], but in
this case fault tolerance is not achieved through the
introduction of redundancy. Within higher organisms,
on the other hand, there exists evidence that particular
genes have evolved that confer robustness on other par-
ticularly vulnerable genes, and therefore to the genome
as a whole. Evolution of such robustness is usually
called canalizing evolution[44], and has been dis-
cussed early on by Waddington[45] and Mather[46].

One candidate for such a canalizing gene is Hsp90,
the heat shock protein that keeps unstable or meta-
stable proteins functional by providing a scaffolding.
Hsp90 is ubiquitous throughout the kingdoms of life,
and is particularly important in signal transduction net-
works in metazoans (see[47]). Recent evidence sug-
gests that Hsp90 has an additional role in preventing
genetic variation from having deleterious effects on
the function of polymorphic proteins[48,49]. In other
words, Hsp90 may be a gene that evolved in response
to selective pressure towards mutational robustness.
Both inDrosophila and inArabidopsis Hsp90 silences
genetic variation which would have phenotypic effects
in the absence of Hsp90.

Besides generating mutational robustness, a gene
such as Hsp90 has an effect on the evolvability of
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a genome[50]. First, a flatter fitness landscape in
which deep valleys are filled in by the action of
Hsp90 is more easily traversed, and distant peaks can
be reached more easily. Second, phenotypic variation
suppressed by the action of Hsp90 can be released
under certain circumstances. In selection experiments
involving Drosophila [48] and Arabidopsis [49], a
phenotypic trait uncovered by the deactivation of
Hsp90 was made to persist, through selective rein-
forcement, in the presence of Hsp90.

As discussed above, the genetics that underlie
mutational robustness are not at all clear. One possi-
bility is that gene duplication events lead toredun-
dancy, which can confer robustness on the organism.
Krakauer and Plotkin[51] recently pointed out that, if
there is a cost for redundancy, a selective pressure to
increase robustness via redundancy in higher organ-
isms exists only for small population sizes. They claim
furthermore that, for large population sizes, redun-
dancy (but not necessarily robustness) is minimized.
The results of an analysis of the genetic networks of
yeast indicate that mutational pressure—rather than
small population size—is responsible for the robust-
ness found in this particular organism[43,52]. Robust-
ness is mainly caused by the interaction of genes with
unrelated functions; only very few duplicated, redun-
dant genes contribute to the overall robustness of the
genetic networks. Whether a similar argument holds
for the protein Hsp90 is unclear. Should Hsp90 be re-
garded mainly as a redundant gene; as the integral part
of a robust, interacting gene network; or is its main
purpose rather the increase of evolvability, as sug-
gested by Wagner et al.[50]? In the light of the above
results and open questions, we believe that a thorough
investigation into the origins and mechanisms of ro-
bustness in lower and higher organisms is warranted.

In the discussion of robustness in eukaryotes in the
preceding paragraphs, we have tacitly assumed that
the results derived in the framework of the quasis-
pecies model are valid for recombining organisms as
well. We have two reasons to justify this assumption.
First, we can expect that the results derived for asex-
ual replicators are directly relevant for the dynamics
of adaptation within tightly linked stretches of DNA,
for example, within single proteins, or, more gener-
ally, within individual haplotypes. Second, although
the selection of mutational robustness under recombi-
nation has not been studied in detail so far, we believe

that recombination will intensify, rather than weaken,
this selective pressure. Recombination alone always
creates sequences that are within the boundaries of
the current mutant cloud[53]. Therefore, recombi-
nation has a contracting property, which should act
towards a stronger concentration of the population in
those regions of genotype space in which the density
of neutral sequences is highest.

6. Conclusions

Recent advances in the theory of asexual evolution
have revealed that the mutation-selection balance of
asexual organisms is much more intricate than what
was previously believed. The average fitness of an
asexual population depends on the distribution of
high-fitness sequences in sequence space, and there is
a selective pressure to increase the robustness against
mutations. Another way to express this result is to
say that asexual populations reduce their mutational
load by increasing the fraction of sequences in the
population that have a high neutrality. In particular, at
very high mutation rates, populations may achieve the
largest reduction in the mutational load by increasing
sequence neutrality at the expense of individual fit-
ness. This can lead to the outcompetition of a faster
replicating but less robust clone of sequences by a
slower replicating but more robust clone. These re-
sults may provide an explanation for the ubiquity of
mutational robustness across different kinds of model
systems, from the genetic code to the structure of
genetic networks of higher organisms.
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