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Whether or not Darwinian evolution leads to an increase in complexity depends crucially on what we mean by
the term. Physical complexity is a measure based on automata theory and information theory that turns out to
be a simple and intuitive measure of the amount of information that an organism stores, in its genome, about
the environment in which it evolves. It can be shown that the physical complexity of the genomes of clonal
organisms must increase in evolution, if they occupy a single niche and if the environment does not change. This
law of increasing complexity is a consequence of natural selection only and can be violated in co-evolving
systems as well as at high mutation rates, in sexual populations, and in time-dependent landscapes. Yet,
co-evolution, because it can be viewed as creating an increase in physical complexity across niches, is likely the
agent of a global increase in complexity. © 2003 Wiley Periodicals, Inc.

Key Words: evolution; complexity; entropy; information; digital life

T he controversial nature of discussions about a trend in

the evolution of complexity can be traced back to a lack

of agreement on the definition of complexity. For

some, it is obvious that complexity has increased, whereas

others claim that there is not enough evidence to argue for

or against an increase, and others still deny that “progress

characterizes the history of life as a whole, or even repre-

sents an orienting force in evolution at all” [1]. Often, these

camps disagree not only about the existence of a trend, but

also on what type of complexity measure to use and

whether maximum or average complexity is pertinent.

When quizzed directly, however, by and large everybody

agrees that nobody really knows what is meant by the word

“complexity” when referring to a biological organism. In-

deed, although complexity measures abound (many of them

invented by physicists [2]) their relationship to biology is

not always clear. In particular, complexity can be under-

stood to refer either to form, function, or to the sequence

that codes for it. When we consider animals, we usually

think of structural complexity, but this seems to be the

hardest measure to define. McShea [3] has studied several

measures of structural complexity, based on number of cell

types, different limb-pair types, and even the fractal dimen-

sion of sutures in ammonoids and found some evidence for

a trend in these indicators, but nothing as conclusive as one

might have anticipated. Also, although a trend can often be

observed in the maximum, it tends to erode in the mean.

Functional complexity can be understood as a measure of

the capacity of an organism to operate successfully on input

data, an information processing capacity therefore, which
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could just as well be applied to computing machinery. An-
other way to define functional complexity would be as the
number of different functions that an organism can perform
[4], which suffers from the problem of unambiguously iden-
tifying functions and separating them into nonoverlapping
classes. Finally, sequence complexity focuses on the proper-
ties of the underlying program, which gives rise to the
complex organism, only. If these three types of complexity
were amenable to a mathematical characterization, we
would expect to find relations between them. For example,
if an organism is viewed as a complicated computing ma-
chine, it is plausible that the code that generates the com-
puting machine would reflect the complexity of the ma-
chine itself (this is a consequence of the existence of
universal Turing machines). Furthermore, we expect the
complication of this machine (necessary for processing
high-bandwidth data) to be reflected in its structural com-
plexity. However, only sequence complexity has an unam-
biguous mathematical definition at this point, so we shall
focus on this measure here.

Many of the complexity measures introduced in Ref. 2
are in fact sequence complexities. Most of them, however,
do not appear satisfactory from an intuitive point of view.
One of the measures most often put forward as a candidate
of sequence complexity, the Kolmogorov complexity (see,
e.g., [1]), turns out to be a measure of the regularity, rather
than complexity, of a sequence. This implies that a random
sequence is accorded maximum Kolmogorov complexity,
clearly not anything we would be interested in as biologists,
because random sequences do not give rise to organisms.

The concept of physical complexity, introduced in Ref.
[5], is different because it appears to correspond exactly to
what biologists think is increasing when, as Bennett [6] says,
“self-organizing systems organize themselves.” Physical
complexity applies only to symbolic sequences that de-
scribe, and operate on, their environment. It turns out to be
a particular case of the “effective complexity” concept in-
dependently developed by Gell-Mann and Lloyd [7], thus
illustrating its use in evolution.

Physical complexity is carefully defined from an autom-
ata-theoretic point of view, but it has a very simple relation-
ship to information theory and turns out to be very intuitive.
Rather than starting with the mathematical definition, I will
instead describe the intuitive notion and connect it with the
mathematical definition later. The latter is important to
clarify the circumstances under which physical complexity
can be measured and to outline the assumptions and errors
going into such an estimate. Finally, I show that physical
complexity must increase in molecular evolution under cer-
tain circumstances [8] and illustrate the trend with experi-
ments conducted with digital organisms. Because the cir-
cumstances under which the law holds exactly seem so
restrictive as to rule out all realistic situations, I discuss how
the law of increasing complexity is manifested in nature and

point out the role of co-evolution. Even though the law can
be broken (as we know that it must, and has been), we
expect it to be responsible for the general trend that has led
us from pools of replicating molecules, through pro-
karyotes, to eukaryotes and multicellular organisms.

PHYSICAL COMPLEXITY
Roughly speaking, the physical complexity of a sequence
can be understood as the amount of information that is
stored in that sequence about a particular environment. For
evolving genomes, this environment is the one in which the
genomes replicate and in which their hosts live (in other
words, the organism’s niche). The definition of physical
complexity must be distinguished from mathematical (or
algorithmic or Kolmogorov) complexity, which is only con-
cerned with the intrinsic regularity (or, in this case, irregu-
larity) of a sequence. The regularity of a sequence is a
reflection of the unchanging laws of mathematics, but not of
the physical world in which such a sequence may mean
something. Information, on the other hand, which as I will
show can be used as a proxy for physical complexity, is
always about something, in particular something physical.
According to this measure, a sequence may embody infor-
mation about one environment (niche) while being random
with respect to another. This makes the measure relative or
conditional on the environment. In other words, what is
complex here may not be complex there, and it is precisely
this feature that brings a number of important observations
(that seem incompatible with a universal monotonous in-
crease in complexity) in line with a law of increasing phys-
ical complexity.

Information is a statistical form of correlation [9] and
thus requires, mathematically and intuitively, a reference to
the system that the information is about. The sequence of
symbols on an information-filled tape enables predictions
about the state of the system the sequence is information
about. This predictive capability implies that the sequence
and the system have “something in common,” that they are
correlated. Such an information-laden sequence will possi-
bly not make predictions about any other environment (un-
less they are very similar). If it is not known which system or
environment the sequence refers to, then the symbols in the
sequence cannot be considered information. Instead, they
are potential information. (Another word for potential in-
formation is entropy.) Thus, to recapitulate, sequences of
symbols acquire the status of information only if we can
identify the system within which the sequence is useful (i.e.,
about which it makes predictions). Otherwise, we must
consider them random, and our measure of the sequence’s
randomness is its entropy.

Let us now proceed to the mathematical definition of
physical complexity. Such a definition is important because
it immediately suggests how complexity can be measured in
real adapting populations. Technically, physical complexity
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is defined as the “shared Kolmogorov complexity” between
the sequence under consideration, and a description of the
environment in which that sequence is to be interpreted [4].
The details of this definition are not relevant to us here, in
particular because this definition is not practical, because it
does not allow the unambiguous determination of sequence
complexity from available data. When physical complexity
is averaged over an ensemble of sequences, on the other
hand, it does become practical, because average mutual (or
shared) Kolmogorov complexity is, in the limit of perfect
coding, simply equal to the amount of information the en-
semble has about the environment to which it adapts. Per-
fect coding, in information theory, refers to the limit in
which information is coded without loss or waste into a
sequence. If this limit is achieved, information is perfectly
compressed. This limit is rarely (if ever) achieved in nature,
and we will be considering the consequences of imperfect
coding (in the form of epistasis) below. Because (average)
physical complexity is not strictly equal to information, we
will often use information simply as a proxy for the se-
quence’s complexity.

At this juncture, it is sufficient to think of the physical
complexity of a sequence as the amount of information that
is coded in an adapting population of such sequences, about
the environment to which it is adapting. This information is
given by the difference between the entropy of the popula-
tion in the absence of selection, and the entropy of the
population given the environment, that is, given the selec-
tive forces that the environment engenders.

MEASURING COMPLEXITY
Because entropies of populations can be measured, the
average physical complexity is a practical measure. The
entropy of an ensemble (i.e., a population) of sequences X,
in which sequences si occur with probabilities pi, is denoted
by the symbol H(X) and calculated as

H�X� � � �
i�1

pilog pi. (1)

The sum in (1) goes over all the different genotypes i in
ensemble X. Whether or not selection acts on sequences of
the ensemble is crucial for the entropy. When selection does
not act, all sequences are equally probable in ensemble X
(because in the absence of selection no sequence has an
advantage over another). In this case, the probabilities pi are
each equal to the inverse population size, and the entropy
takes on its maximal value Hmax(X) � log N. In an infinite
population, the number of all possible genotypes is given by
the size of the monomer alphabet, D, to the power of the
length of the sequence, L, i.e., N � DL. If we agree to take
logarithms to the base of the alphabet size, then the uncon-
ditional entropy of a population of sequences (that is, the

entropy in the absence of selection) is just equal to the
sequence length: Hmax(X) � L. This result is intuitively sim-
ple: the amount of information that can potentially be
stored in a sequence of length L is just equal to the sequence
length.

In the presence of selection, the probabilities to find
particular genotypes i in the population are highly nonuni-
form: most sequences do not appear (either because they
have not yet been discovered by the process of mutation
or because their fitness in the particular environment van-
ishes), whereas a few sequences are over-represented. As
described above, the amount of information that a popula-
tion X stores about the environment E in which it evolves is
then given by the difference:

I�X:E� � Hmax � H�X�E� � L � �
i�1

pilog pi. (2)

Here, I use the standard notation I(A : B) for the entropy
shared between A and B (i.e., the information that A has
about B), and the symbol H(A � B) for the conditional en-
tropy of A given B. Note that although X in the above
formulae represents an ensemble of sequences, E stands for
one particular environment, not an ensemble of environ-
ments. (Because E is not an ensemble but a particular
instance, I(X : E) is strictly speaking a difference of entropies
rather than information in the sense of Shannon [9], but I
will use the term information anyway.) Now it has become
clear why I referred to the maximal entropy of the ensemble,
Hmax(X) � L, as the unconditional entropy of the popula-
tion. This entropy does not refer to any environment, thus it
is not conditional on any particular one.

The probabilities pi that go into the calculation of the
conditional entropy in (2) are in fact conditional probabil-
ities, because the probability to find genotype i in environ-
ment E is not equal to the probability to find the same
sequence in, say, environment E�. These probabilities can in
principle be estimated by simply counting the abundance of
each genotype i in the population, ni, so that

pi �
ni

N
,

where N is the population size. Unfortunately, the error
committed by approximating the probabilities by the rela-
tive abundance gives rise to a sizable error in the entropy of
Eq. (1), so large in fact that the estimated entropy is only
meaningful for essentially infinite population sizes [10, 11].
Because we need the entropy Eq. (1) in order to estimate the
physical complexity, we approximate it instead by summing
up the entropy at every site along the sequence. This is done
by aligning all sequences in the population and obtaining
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the substitution probabilities at each site. In this manner,
we can obtain the per-site entropy

H�j� � � �
i�G,C,A,T

pi�j� log pi�j� (3)

for site j by compiling the probabilities pi(j) to find nucle-
otides i at position j. The (conditional) entropy, Eq. (1), is
then approximated by summing over all sites j in the se-
quence, i.e.,

H�X� � �
j�1

L

H�j�, (4)

so that an approximation for the physical complexity of a
population of sequences of length L is

C1�H� � L � H�X�, (5)

with H(X) given by Eq. (4) above.
Technically, this is only a good approximation if there

are no correlations between sites in a sequence. Such cor-
relations manifest themselves by epistatic interactions (ep-
istasis) between mutations. It is well known that such ep-
istasis exists (see Ref. [12] for a review), in particular in
populations that are not well equilibrated. Fortunately, as
described in the Appendix of Ref. [8], it is possible to correct
for epistatic correlations if mutations of the gene under
consideration can be obtained and their fitness evaluated.
In the following, we are going to assume that epistatic
effects are sufficiently weak that the corrections can be
ignored. In fact, Epistasis is usually more problematic for
clonal organisms (and at low mutation rates) because
asexuals are at maximal linkage disequilibrium, and there-
fore strong epistasis in a gene that could be coded in a much
shorter fashion can prevent this compression from happen-
ing (perhaps because it would take too many mutations to
arrive to a state at which the gene could be compressed).
Recombination can be thought of as a way to improve
coding efficiency, as it breaks up linkage disequilibrium. In
any case, misestimates of complexity due to epistasis can be
corrected for by the formula in the Appendix of Ref. 8.

EVOLUTION OF COMPLEXITY IN DIGITAL ORGANISMS
The increase in complexity that is the object of debate refers
to the emergence of novelty in macroevolution. Because
macroevolution takes place on geological timescales, it is
difficult to witness an increase in complexity in conven-
tional experimental populations of animals, plants, or even
bacteria. This obstacle disappears if we have access to a
form of life with a very short generation time. Digital organ-
isms are just such a form of life: they are computer pro-

grams that self-replicate, mutate, and compete for resources
[13–21]. Because digital organisms must copy their entire
genome to survive within the computer’s memory and com-
pete for space and computer time with other programs to
which they are related by descent, experiments with popu-
lations of digital organisms are to be contrasted with more
conventional numerical simulations of the evolutionary
process. These organisms, because they are defined by the
sequence of instructions that constitute their genome, are
not simulated. They are physically present in the comput-
er’s memory, and physically live there. The world to which
these creatures adapt, on the other hand, is simulated,
which allows the digital experimenter unparalleled preci-
sion in the planning, execution, and analysis of his experi-
ments.

In order to survive in their world, digital organisms must
replicate fast and use the available resources efficiently. The
efficient use of resources concerns chiefly the utilization of
the primary “energy source” for digital organisms: CPU
(central processing unit) time. Without CPU time, digital
organisms cannot thrive because they need to copy them-
selves to survive, and without the code being executed, no
copying takes place.

Using random numbers that the organisms can read into
their CPU with an appropriate instruction, programs can
perform computations. Clearly, only very particular se-
quences of instructions perform meaningful computations
on input numbers. In this sense, we can view such a se-
quence as the equivalent of a nucleotide sequence coding
for an enzyme that catalyzes a reaction, involving two input
chemicals, producing the energy-rich “output” chemical. In
the evolutionary experiments described below, the re-
warded computations are logical operations (such as AND,
OR, NOR, etc.) performed on binary input strings. During
adaptation, many of these computational reactions evolve
among the digital organisms, and are used in a coordinated
manner to accelerate their reproduction. In that sense, it
can be said that these computational genes play the role of
a computational metabolism, quite analogous to the en-
zyme-based biochemical metabolisms. The “monomers”
from which these programs are constructed (the instruction
set) is custom-built for their virtual CPU. For these experi-
ments [8], the alphabet has 28 possible instructions, one of
which is a logical primitive: NAND (the “not-and” opera-
tion). The experiments described below are performed by
running the Avida software [15] on a standard computer.
For more details on the biology of digital organisms, see Ref.
[20].

Consider the behavior of fitness over time (depicted be-
low is the replication rate of the fastest replicator in a
population of 3600 adapting programs whose sequence
length is kept fixed at 100, and seeded with a single simple
replicator) in Figure 1. Time is measured here in arbitrary
units called updates, defined as the time it takes to execute
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an average of 30 instructions for each of the 3600 programs
in the population. One generation corresponds to between
10 and 100 updates in such populations. Note the sudden
increase in fitness around update 70,000. At this point in
time, a mutation must have created a new genotype that
proves to be much superior to all others. After our discus-
sion, we expect this increase in fitness to be associated with
an increase in information, so this genotype is a good can-
didate to look for an increase in physical complexity.

A plot of the approximate complexity [calculated accord-
ing to Eq. (5)] is shown in Figure 2, where it is apparent that
the complexity steadily increases, except for a period at the
beginning and shortly after each transition. Both observa-
tions can easily be explained. During the initial growth of
the population, most instructions appear fixed in the pop-
ulation (meaning, they are the same at that position across
the population) because mutations have not had sufficient
time to randomize noncoding instructions (instructions that
do not contribute to the survival of the sequence). Also,
evolution may struggle with a (hand-written) genome that,
although extremely ill-suited to the environment, is also
difficult to “re-code.” Such code may simply be badly com-
pressed, and it can take evolution a while to find a better
way to represent the same information. (This hypothesis
could be tested by measuring the amount of epistasis in the
genome during this initial period and compare it to the
epistasis after the population has relaxed, because bad com-
pression must be associated with interactions between mu-
tations.)

After each transition, the estimated complexity over-
shoots its equilibrium value due to the hitchhiking effect:

neutral instructions hitchhiking on beneficial ones appear
fixed, until mutations can randomize them again. This is
particularly clear in the transition around 70,000 updates in
Figure 2, to which we now turn our attention.

Because of the hitchhiking effect just mentioned, the
amount of information gained in the transition highlighted
in Figure 2 is not measured very accurately, simply because
equilibration (required for an accurate estimate) takes
longer than the time until the next transition. To get a more
accurate estimate of the per-site entropy Eq. (4), we can
extract dominant genotypes just before and after the tran-
sition. In order to determine whether an instruction is en-
tropy or information, we create all possible one-point mu-
tants of the pair of organisms and obtain their fitness in
isolation. In a sense, this is equivalent to building virtual,
fully equilibrated populations. If a mutation does not
change the fitness or increases it, it is deemed viable,
whereas all deleterious mutations are classified together
with the lethal ones, because they have a low probability of
appearing in subsequent generations. After this has been
done for each locus, the per-site entropy at locus xi can be
estimated as

H�xi� � logD�Nviable�, (6)

where Nviable is the number of neutral or beneficial substi-
tutions at that locus. In Eq. (6), the logarithm is taken to the
base of the alphabet size, thus ensuring that our measure for
the randomness (entropy) at each location is normalized to

FIGURE 1

Replication rate of fastest replicator in a population of 3600 adapting
digital organisms.

FIGURE 2

Approximate complexity according to Eq. (5) for a population adapting
to a complex world. The dashed lines indicate the times chosen as
“pre” and “post”-transition, at which the genotypes analyzed in
Figure 3 were extracted.
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lie between zero and one. If we do this for the organisms
before and after the transition, we obtain the per-site en-
tropies of Figure 3. It is interesting to observe the changes in
substitution pattern between these two genomes.

The most radical change seems to have taken place in
the region between instructions 66 and 73, where about
seven instructions that were moderately variable (in the
virtual population) seemed to have turned “cold,” i.e., they
have turned vulnerable to mutations. This is precisely the
mechanism by which natural selection creates complexity:
entropy is transformed into information. There are other
places in the genome where “hot” instructions turned
“cold” and vice versa. The net gain in information is about
six instructions, which is close to the number that we arrive
at if we take into account corrections for epistasis [8].

RISE AND FALL OF COMPLEXITY
The most obvious origin of a complexity catastrophe is a
drastically changing environment. As discussed above,
physical complexity is a quantity defined with reference to
an environment. If the changes in the environment are fast
and extreme, organisms inhabiting this environment will
most likely be maladapted to it, and their measured physical
complexity will have decreased commensurately. In small

populations, high mutation rates can also lead to a decrease
in complexity, because Muller’s ratchet can lead to infor-
mation loss through the accidental loss of the fittest se-
quence. In the extreme case (critically high mutation rates)
natural selection can become inactive, a phenomenon
known as the error catastrophe in the macromolecular evo-
lution literature [22].

As is well known, sexual recombination can also lead to an
accumulation of deleterious mutations that compromise the
acquired information. Although asexual populations can
purge deleterious mutations with certainty (as long as the
mutation rate is not too high and the population size too
small, as described above), populations of sexual organisms
are at risk of gene loss at any mutation rate if deleterious
mutations interact antagonistically [23]. Finally, co-evolution
between species occupying different niches is a special case of
a changing environment (for each of the interacting species)
and thus opens up the possibility of escaping the inexorable
growth of complexity dictated by natural selection. Paradoxi-
cally however, there are good reasons to assume that, for the
most part, co-evolution will aid, rather than hinder, the evo-
lution of complexity, because co-evolution is a slow rather
than drastic environmental change, creating new niches that
provide new opportunities for adaptation.

FIGURE 3

Each instruction in the two genomes in (A) and (B) is colored according to its per-site entropy (scale in the middle). An instruction that is fixed in the
population has entropy close to zero (blue), implying that a mutation of that locus produces a nonfunctional organism. On the contrary, loci that can be
mutated with impunity have entropy one (red). The genome (A) was extracted from the population after 2991 generations (the left of the two red-dashed
lines in Figure 2), whereas genome (B) was extracted just after the transition at 3194 generations (right dashed line in Figure 2).
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As we saw, because niches can change and because
many niches of differing potential information coexist at the
same time, we cannot expect that a trend in one niche will
persist forever, nor that the same trend will be observable in
all currently existing niches. In one niche, for example, its
inhabitants may have incorporated all of its potential infor-
mation into their genome (such as some prokaryotes),
whereas another niche may just have been invaded so that
its inhabitants show rapid gene turnover. The coexistence of
niches with different entropy (different potential complex-
ity) explains the coexistence of organisms with differing
complexity.

Should we not expect an overall trend if evolution pro-
duces more and more diverse niches with more and more
potential information? This question addresses the issue of
co-evolution and whether this process indeed produces
niches with more and more entropy (which could then host,
in turn, organisms with more and more complexity). This
question is complicated by the fact that co-evolution nec-
essarily produces changes in an organism’s niche, which
can potentially reduce an organism’s complexity. In gen-
eral, a change in niche will almost always first produce a
decrease in physical complexity, because only in the most
rare circumstances will the change be “just so” that it con-
verts an entropic sequence into an informational one. How-
ever, if the change in niche makes it richer (i.e., produces
features that are awaiting discovery), then following the
initial decline in complexity the organism can enter a period
of adaptation that can take it into realms of complexity
hitherto unattainable. Note that the invasion of a simple
environment by adaptive radiation (a species that has shed
genes not necessary for survival in the simple world) would
not lead to a decrease in total complexity as long as the
ancestral species still exists. Therefore, even if new niches
are created via co-evolution that are in equal amounts more
simple and more complex than the currently existing ones,
because the invasion of the more complicated niches in-
creases total complexity, whereas the invasion of the
simples ones do not decrease it, we can be confident that
the process of co-evolution and its capacity to create more
complicated environments may be the possible unifying
process that could give rise to an overall trend.

Unfortunately, the mathematics of information in co-
evolving environments has not yet been developed, so it is
premature to make a prediction about whether this is the
case or not. It seems plausible to me, but it is clear that
counterexamples can be manufactured where co-evolution

gives rise to catastrophic extinctions (via the annihilation of
the existing niches), which reduce the environment’s en-
tropy and necessarily the physical complexity of its inhabitants
at the same time. In such a formalism, the total complexity of
an ecosystem would have to be defined as the mutual entropy
of all organisms, about each other and the world they live in.
This is an expression that is not difficult to write down, but it
is a quantity that is certainly difficult to measure.

CONCLUSIONS
In order to be able to speak about complexity, we must
define it. I have presented a mathematical definition of
sequence complexity that has a very intuitive interpretation
for biological genomes, as the amount of information a
population stores about the environment in which it lives.
With this definition, we can address the issue of a trend in
the evolution of complexity. By showing that natural selec-
tion in a niche creates information about that niche, it is
possible to show that physical complexity within that niche
must increase if the environment does not change.

Although natural selection can fail to maintain the ac-
quired information, it is highly likely that the mechanism of
interacting niches in an ecosystem will ultimately lead not
only to a trend within each niche, but also to a trend in the
overall (total) complexity of an ecosystem. Physical com-
plexity increases if selection acts properly, and decreases if
it fails. Still, this measure of complexity does not translate to
adaptation. An organism well-adapted to a simple niche can
have a lower physical complexity than an organism badly
adapted to a complicated niche. Thus, adaptation reflects
only the degree to which the potential complexity of the
niche is reflected in the physical complexity of the organ-
ism, and certainly does not allow complexity comparisons
across niches.
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