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Abstract 

We suggest that ensembles of self-replicating entities such as biological systems naturally evolve to a self-organized critical 
state in which fluctuations, as well as waiting times between phase transitions (“epochs”), are distributed according to a l/f” 
power law. Such distributions can explain observed frequency distributions in extinction events as well as fractal population 
structures, and support the punctuated equilibrium picture of evolution. We demonstrate these concepts by analyzing a 
population of coexisting self-replicating strings (segments of computer code) subject to mutation and survival of the fittest, 
which constitutes an artificial living system. 

Self-organized criticality [ 1 ] is the term generically 
applied to systems that are driven to a critical state 

which is robust to perturbations and whose macro- 
scopic behavior is predictable to the extent that it fol- 
lows power laws with exponents depending on geom- 
etry and spatial structure. In general, the microscopic 
processes giving rise to the self-organized critical state 
are dissipative transport processes associated with a 
threshold, or critical, variable. The paradigm for the 
self-organized critical state is the sandpile: the critical 

state is the self-similar and robust pile itself, the distri- 
butions of sizes and duration of avalanches (resulting 
from perturbations) follow distinct power laws, and 
grains of sand are transported if the local slope of the 
pile exceeds a critical value, thus restoring the critical 

state. 
It has been suggested [ 2-61 that biological popula- 

tions are typically in a self-organized critical state, evi- 
denced for example by a power-law distribution of ex- 
tinction events. Furthermore, it was observed that pop- 
ulation structures gleaned from taxonomic data [7] 

show a fractal geometry; that is the distribution of sub- 
taxa within taxa is distinctly of the power-law type. 

While this is a very appealing idea, especially in 
view of the robustness of living systems, it has suffered 
from being somewhat vague, mainly because of the 
difficulty involved in modeling living systems. Specif- 
ically, there is as yet neither a clear identification of 

the self-organized critical state of life or the agent that 
causes self-organization, nor a definition of a criti- 
cal or threshold variable whose disturbance causes the 

ubiquitous avalanches giving rise to power-law distri- 

butions. 
Here, we report the observation of self-organized 

criticality in an artificial living system, the tierra en- 

vironment [ 8,9]. In this system, strings of machine- 

language-like instructions with the ability to self- 
replicate in core memory “live” and co-evolve in an 
environment subject to random mutation and selec- 
tion of the fittest. As such, it is not a simulation of 
life but rather arti$%zl life. Interestingly, the system 
displays some of the uncanny hallmarks known from 
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simple proto-cellular systems, such as growth of the 
genome and increasing complexity. Most importantly, 
this artificial environment offers the chance to control 
the microscopic processes leading to complex behav- 

ior, such as replication and mutation. Furthermore, 

the macroscopic behavior is predictable via the usual 
methods of statistical mechanics applied to an en- 
semble of self-replicating entities. As such, this is a 

unique system to test the hypotheses of self-organized 
criticality in living systems. 

Simple equations [ 9,101 reveal that in this system 
the fitness of a string in the population is determined 
by its replication rate, as measured by executing the 
string’s instructions (its “genome”) and counting the 
number of offspring per unit time. The principle of 
“survival-of-the-fittest” boils down to a “survival-of- 

the-most-populous”. Fitness is then a quantity that is 
germtype specific, i.e., each individual arrangement of 
instructions in a string translates into a specific repli- 

cation rate while the survival probability depends on 

the fitness of the rest of the population. We can thus 
think of fitness as a highly complicated function on 
the space of all strings, while the population is char- 
acterized by the current average value. Any popula- 
tion, however, is metastable: a successful mutation can 

create a new “best” genotype (or “master sequence” 
[ 111) with a higher replication rate that disrupts the 
equilibrium and induces a phase transition to a new 
“vacuum”, defined by the new dominant master se- 
quence and its offspring. Note also that there is no 
universal “best” string, as the system is in principle 

infinite and open-ended. 

The system of self-replicating strings can be treated 
in a mean-field approximation that makes it amenable 
to a statistical description in which the terms “vac- 
uum” and “phase transition” are precise information- 
theoretic analogues of the respective quantities in con- 

ventional statistical systems. 
Let pi stand for the replication rate of genotype i, 

and (E) for its average over the population. In the 
mean-field approximation, for strings of length 1 sub- 
ject to a mutation rate R (we are considering here 
only external “cosmic-ray” mutations, which have an 
effect similar to copy-errors), the critical (self-tuned) 
variable is the growth factor, 

yi = E, - (E) - RI . (1) 

In the equilibrium situation, the master sequence and 
its e-degenerate offspring and mutants have yi = 0, 
while inferior species have yi < 0. This prevents ex- 
ponential growth of the most successful species in the 

long run. An advantageous mutation, however, can 

make yi > 0 for the new master sequence. Such a 
disturbance causes the information contained in the 
master sequence to be transmitted throughout the sys- 

tem via the offspring, giving rise to avalanches that 
are scale-independent. Gradually, all genotypes with 
a subcritical replication rate will become extinct and 

be replaced: the system returns to its critical state. 
Clearly, the normal state of such a population of self- 
replicating entities is a superposition of a very large 

number of metastable states, with transitions between 
them induced by mutation and copy-errors. It under- 
goes spontaneous phase transitions if a mutation cre- 

ates a genotype withyi > 0, ushering in a new “epoch” 
of domination by a new species. In fact, in such a sys- 

tem there is no scale that would set the average time 
between avalanches, nor is there a scale setting the 
size of the avalanche. The latter is determined by the 
amount of information gained by the new master se- 
quence. In a system with an infinite “supply” of infor- 
mation (complex fitness landscape), we thus expect 
both distributions to be given by power laws. 

To test this hypothesis, we have analyzed the evo- 
lution of an ensemble of strings subject to Poisson- 
random mutations at a rate of R = 0.5 x lo-’ muta- 

tions per site per unit time (the unit of time is the ex- 

ecution of one instruction). The strings are segments 
of computer code of a specially developed instruction 

set with only 32 instructions running on a virtual com- 
puter. A mutated instruction most likely will cause 
the program to “break”, yet occasionally may improve 
it. The strings live in a strip of memory with a total 
number of 13 1072 sites that can represent one instruc- 

tion each, with periodic boundary condition (i.e., the 

strip wraps on itself). It is typically inhabited by 600- 
1400 strings of length 60- 150, all offspring of a single 
(handwritten) progenitor that is able to self-replicate 
and used to “inoculate” the strip. For purposes of re- 
producibility, we used the original “ancestor” written 
by Ray [8], who created the tierra system. As de- 
scribed elsewhere [ 91, this ancestor is well-suited for 
evolutionary experiments due to the amount of redun- 
dancy in its code. The fitness landscape that this pop- 
ulation explores is determined br all possible ways to 
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Fig. I. Fitness curve for a typical run. The fitness parameter (2 

of the most successful (i.e., most populous) genotype is plotted 

as a function of time, measured every million instructions for a 

mutation rate R = 0.5 x 10w8. 

reduce the time to gestate a single offspring (the ges- 

tation time) and the opportunity to trigger bonus CPU 
time by developing the “genetic code” necessary to 
perform certain user-specified tasks (see Ref. [9] for 
details on this environment). In other words, we pro- 

vide an environment containing information that the 
strings can discover (through adaptive mutation) and 
exploit. 

The population adapts to this environment through 

discontinuous jumps, as evidenced in Fig. 1. There, 
we have plotted the “fitness-of-the-best” Q versus total 
number of instructions executed (i.e., time elapsed) 
every million instructions for a typical run. For tech- 
nical reasons, the measured quantity cr is the replica- 

tion rate E multiplied by the total number of instruc- 
tions allocated to the strings in one ‘sweep” through 
the population, with 0 < (Y 6 1. The latter bound is 
imposed only to maintain parallelism: in order to em- 
ulate parallel coexistence, each string is allocated a 
certain slice of CPU time and executed serially (see, 

e.g., Ref. [ 81 for details). The visible noise in Fig. 1 

is mainly due to mutations and finite-size effects. This 
noise, of course, drives the fitness jumps that adapt the 
population to the environment. 

We have plotted in Fig. 2 the power spectral den- 

sity of a typical fitness history, which reveals a clear 
power-law distribution with P(f) N f -@ and /? = 
2.04~0.05. Scaling exponents from other runs are com- 
patible within the error bars quoted. 

Fluctuations distributed according to a power law 
are the telltale sign of a self-organized critical state 
[ 11. However, since there certainly are systems (such 

Fig. 2. Power spectrum P(f) of a typical fitness curve a(t) 

(Fig. 1). The dashed line is a fit to P(f’) - f-P with 

p = 2.0 i 0.05. 

as random walks) with identical power-law spectra 

which are not self-organized, we have also measured 
the distribution of waiting times between phase tran- 
sitions, or length of epochs, in 50 runs under identical 
conditions (save the random number seed), resulting 
in 5 12 measured waiting times. 

To obtain the waiting times, we determined that a 
phase transition occurred if the fitness jumps discon- 

tinually to a new level with a fitness increase of a min- 
imum of 7.5%. As the resulting plot strongly suggests 

that the fitness curves are fractal, this condition can- 
not change the power law. Rather, fitness curves like 
the one in Fig. 1 are expected to look similar at all 

scales (devil’s staircase [ 121). Clearly, as we cannot 
measure waiting times l t 2 500 with good statisti- 
cal accuracy due to the finite lengths of our runs, the 
distribution function shows finite-size effects that we 
model with a cutoff parameter T, 

N( 7) N 7-m ewTfT. (2) 

Statistically more reliable is the integrated distribution 

function 

00 

M(7) = t s N(t) dt - $1 -c&r/T), (3) 

7 

’ Waiting times are measured in units of millions of instructions 
executed. Most runs where stopped after between 500 and 2000 

million instructions where executed. 
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Fig. 3. Integrated distribution of times between phase transitions r 

(length of epoch). The solid line is a fit to the incomplete gamma 

function with a = 0.6 i 0. I and a cutoff parameter T = 540 $40 

modeling finite-size effects. 

where r( I - LY, r/7’) is an incomplete gamma func- 

tion, which is distributed with the same power-law 
exponent as N( 7). Indeed the resulting fit (shown in 

Fig. 3) yields (Y = 0.6 * 0.1 and T = 540 f 40 which 
agrees with the fit obtained from N(r) within error 
bars, but is more accurate. While we expect the co- 
efficient (Y to be universal, the cutoff depends on the 
average length of runs. 

A power-law distribution in waiting times has a 
number of significant consequences. First, the distri- 
bution of waiting times between events of a certain 

size in a random walk model is exponential rather 
than of the power-law type, as is the distribution in 
all percolation-type systems nor tuned to the critical 
variable. It appears thus that temporal correlations are 

very sensitive to the level of self-organization and the 
criticality of the model. Further, a power-law distri- 
bution of epochs in a mode1 of evolution may solve 
a puzzling problem in biology, namely why there is 

a fractal structure in taxonomic systems [ 71. Indeed, 
if the number of subspecies that a species generates 
is proportional to the time it dominates the popula- 
tion, a power-law distribution of waiting times implies 
a power-law distribution in the number of species N 
with II subspecies, as measured by Burlando [ 71. 

We have suggested that the normal state of an en- 
semble of self-replicating entities is self-organized 
criticality, the agent of self-organization being infor- 
mation. We identified the growth factor yi as the crit- 
ical variable and described avalanches of “invention” 

that drive the adaptation of the population. We tested 
these hypotheses in the artificial life system tierra and 

found power-law distributions in the power spectrum 
of fitness fluctuations, as well as in the distribution 
of waiting times. Self-organized criticality in living 

systems has wide-ranging consequences for theories 

of evolution. On the one hand, gradualism is incom- 
patible with criticality, and a punctuated equilibrium 
picture is favoured (see, e.g., Ref. [ 131). On the other 

hand, the fractal nature of the fitness history (Fig. 1) 

would account for fitness improvements on all scales 
driven only by microscopic mutations. Furthermore, 
SOC in living systems may explain the fractal struc- 

ture in the taxonomic system as measured recently. 
Note added. After completion of this manuscript, 

we became aware of Ref. [ 141, in which conclusions 

similar to ours are drawn from a simple evolutionary 

model. 
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